Artificial intelligence and Machine learning Roadmap

ETHINGS
0

Prerequisites

Before diving deep into AI/ML:

1. Math Essentials

• Linear Algebra – Vectors, Matrices, Eigenvalues

• Probability & Statistics – Distributions, Bayes Theorem

• Calculus – Derivatives, Gradients (for optimization)

• Discrete Mathematics (basic logic & set theory)

2. Programming (Python Preferred)

Variables, loops, functions, OOP

• Libraries: NumPy, Pandas, Matplotlib

AI & ML Roadmap

Stage 1: Core Machine Learning

1. Supervised Learning

Linear Regression

Logistic Regression

Decision Trees

SVM

KNN

2. Unsupervised Learning

Clustering (K-Means, DBSCAN)

Dimensionality Reduction (PCA, t-SNE)

3. Model Evaluation

Accuracy, Precision, Recall, F1-Score

Confusion Matrix

Cross-Validation

4. ML Tools

scikit-learn

Seaborn, Matplotlib


Project idea: Predict housing prices, classify spam emails

Stage 2: Deep Learning (DL)

1. Neural Networks

Perceptron

Activation Functions

Backpropagation

2. Frameworks

TensorFlow

Keras or PyTorch

3. Deep Architectures

CNN (for images)

RNN/LSTM (for sequences)

Autoencoders

Project idea: Handwritten digit recognition (MNIST), sentiment analysis

Stage 3: Advanced Topics

1. Natural Language Processing (NLP)

Tokenization, Stemming, Lemmatization

Word Embeddings (Word2Vec, GloVe)

Transformers (BERT, GPT)

2. Computer Vision

Image Classification

Object Detection (YOLO, SSD)

Image Segmentation

3. Reinforcement Learning

Q-Learning

Deep Q-Networks (DQN)

Project idea: Chatbot, Face Recognition, Game AI

Stage 4: Deployment & MLOps

1. Model Deployment

Flask / FastAPI for APIs

Streamlit / Gradio for demos

2. MLOps Basics

Model versioning (MLflow, DVC)

Serving (Docker, Kubernetes)

Monitoring

Tools & Platforms

• Datasets: Kaggle, UCI ML Repo

Courses:

Andrew Ng’s ML Course (Coursera)

Fast.ai

Deep Learning Specialization - Coursera

• Books:

Hands-On ML with Scikit-Learn, Keras, and TensorFlow (Aurélien Géron)

Deep Learning by Ian Goodfellow

🛠 Suggested Project Ideas by Level

Level

Project Ideas

Beginner

Linear regression, Iris classification

Intermediate

Face detection, Spam classifier

Advanced

Image captioning, Autonomous driving simulation, ChatGPT clone (simple)

Post a Comment

0Comments

Post a Comment (0)